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This is a short, self-contained summary of problems connected with the interpre- 
tation of state vectors in quantum mechanics. We discuss the reconstruction of 
the "~ function" from statistical data, some related mathematical questions, the 
classical "paradoxes," the probability interpretation of the state vectors, and, 
finally, quantum logic in relation to hidden variable theories and Hilbert space 
formalism, to build up a consistent framework for the indeterministic quantum 
picture of nature. 

We collect here remarks concerning the interpretation of state vectors 
in quantum mechanics. The well-known "paradoxes" are avoided by a 
systematic use of the Heisenberg picture, so that a state vector is considered 
as a code for the maximal information about the system available to an 
external observer, while the internal logic of a quantum system is described 
by the lattice of closed subspaces of the underlying Hilbert space. We 
discuss an interesting mathematical problem concerning the reconstruction 
of a state vector from statistical data alone, and close the paper with a brief 
description of quantum logic and hidden variable theories that throws 
further light on the parallelism and distinction between the quantum and 
classical pictures of nature. 

(1) To fix our notation we recall the standard formalism of quantum 
mechanics. With a quantum system Q one associates a complex Hilbert 
space X and a set ~ of Hermitian operators in X; ( x l y )  is the inner product 
of vectors x, y of X. Let X be the set of rays, or one-dimensional subspaces, 
of X. The elements of X are called states of Q, the elements of ~ are called 
observables. Let P ( X )  be the lattice of all projectors in X and 6~(R) denote 
the algebra of Borel subsets on the real line R. To every Hermitian operator 
A there corresponds a projection-valued measured PA: ~ --' ~ in 
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~ The states YE .gare used as codes for the maximal information about 
the way the system Q has been prepared. To any observable A ~  ~ there 
corresponds a macroscopic instrument I(A) measuring its value when 
interacting with Q. Suppose that a sequence s = (s I, s 2, s 3 . . . .  } of identically 
prepared copies of Q interacts with I(A) and assume that I(A) is restored to 
its initial position after the interaction with s, is over and before the 
interaction with s,,+ i starts. For any B E ~ ( R )  the instrument I (A) checks 
the statement " the  value of A belongs to B "  denoted, for brevity, by 
"v(A)EB"; we set a~--0 (or 1) whenever I(A) finds v(A)EB false (or 
true) on s~. Born's postulate asserts that 

lim 1 ~ a=(pA(B)x lx ) / ( x l x  ) 
n ~ c o  r/ i =  1 

for any x E ~, where .g denotes the state in which the elements of s have 
been prepared. Generalizing this setup one introduces mixed states, or 
mixtures, as positive Hermitian operators Y of trace class with Sp Y =  1. By 
a well-known lemma, any such operator can be represented in the form 
Y=Y,~=l)tiPi, with Pi~@(X),SpPi:l,Y,~=lTti=l, ~i)O for any i. In 
particular, P~ is a projector on an one-dimensional subspace .%E X. A 
mixture Y is used as a code for noncomplete information about the way of 
preparation of Q. The sequence s = (s I, s 2 . . . .  } of copies of Q is said to be 
prepared in a mixed state Y, if it can be subdivided into subsequences 
S(~)  fo(~) ~(~) = t ~  , ~2 . . . .  } i n  such a w a y  t h a t  ~ - , , ~ 1 7 6  o~.) ~ . ~  o - ~ . = ~ o  ,oj is prepared in the 
state $~ and },~ denotes the relative density of s ('~ in s, that is, }~k = 
lim N_ ~n(*)/N, where n (~ denotes the number of s~ U s ~') with i ~ N. In this 
situation Born's postulate (1) implies that 

lim 1 ~ ai=Sp[Y.pA(B)] (2) 
n ~ o o  n i = l  

where a =  {al,ct 2 . . . .  } is the result of checking by I(A) the validity of 
v(A)EB on s, as above. An interaction of a quantum system QI with 
another system Q2, in particular, with any of the instruments I(A) intro- 
duced before, can be described by considering the combined system Q = 
{QJ,Q2} with the underlying Hilbert space X =  XI| z and the set of 
observables containing any of the observables A~| 1 and 1 | 2, whenever 
A~ ~ ~i, where Xi, ~i are the Hilbert space and the set of observables of Q~. 
Observables of Q are assumed to be time dependent. Namely, one intro- 
duces an Hermitian operator H in X, the Hamiltonian of interaction, and, 
for any AU ~ measured by I(A) at the moment of time t on a sample s of 
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copies of Q prepared in the state Y, replaces (2) by 

lim -1 ~ %=Sp[Y. pA,(B)] (3) 
n ~ o o  n i = 1  

where A t = U t- JA U t, U t = exp(iHt) is the evolution operator of the system. It 
goes without saying that the measurements are supposed to be performed so 
quickly that A t could not change essentially during the interval of the 
measurement. 

Sometimes it is convenient to replace Q2 by an external (to QI) 
potential. In this case we work in X t only, so that H is a chosen Hermitian 
operator in this space. 

Moreover, if the expression in the right-hand side of (1) is actually less 
than 1 and greater than 0, one assumes that the sequence a =  {a I, ot 2 . . . .  } 

obtained by I(A) is random: it should not possess any regularities and is 
subject to the restriction (1) only. Our first remark is that the work on the 
right definition of random sequences (see, e.g., Benioff, 1977, and references 
therein) can be rather relevant in this context. The point is that here the 
random character of the sequence a is due to the nature of things, rather 
than to our incomplete knowledge of it (as is assumed to be the case in 
classical statistical physics). We are not quite sure that the classical theory 
of probabilities is an adequate tool in this situation; if, however, it is used, 
one should notice that the Born postulate, as stated above, is a stronger 
statement than "probabil i ty of v(A)E B is equal to (PA(B)x[x)/(xlx)," 
since (1) is required to hold for the particular sequence a obtained by I(A). 
Our further more technical comments follow in Sections (2)-(4) below. 

(2) One may ask oneself whether the notion of a state vector is 
operationally well defined. Even assuming that one can carry out a long 
enough series of measurements to obtain a good approximation to the value 
(PA (B)x  I x ) / ( x  I x) [Born's postulate says nothing about the rate of conver- 
gence in the left hand side of (1)!], do such data suffice to reproduce .~? To 
state it rigorously, we call a set (~ of Hermitian operators in X sufficient, if 

( P A ( B ) x , I x , )  _ (PA(B)x21x2)  

(x�91 (x lx ) foranyA@ff.,BE~(R) (4) 

implies .~1 = Y2. We ask now: is the set of observables of Q sufficient? The 
following simple example shows that the answer may be negative. 

Example. Consider a free massive particle without internal degrees of 
freedom; choose X = ~2(R 3), the space of complex-valued square integrable 
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functions on R 3, (~ = {/~i, "~i' s ~<i~< 3}, where, as usual, 

( .~jf)(x) : xj f (x) ,  
^ ^ 

Lj = x, Pk -- ~'k P~ 

xj denotes the j t h  projection of x ~  R 3, ( j ,  i, k 
indices (1,2, 3). 

Lemma. The set C~' is not sufficient. 

is an even permutation of 

Proof. Choose ~b i(x) = f ( r )  exp [icp(r)], ~2(X) ---- f ( r )  exp [ -- iqo(r)], where 
"~ 9 2 . 1 / 2 .  r = (x~  + x~ + x 3) , one can check easily that, although (4) is satisfied, 

4'~ 4:~+2 for any complex constant ~ whenever q0 is not constant ( f  and cp 
are two real-valued functions). �9 

To repair the situation one may make our system interact with different 
potentials and ask whether measuring A t for several t suffices to reproduce 
Y. This question has been studied, in the situation of the example, in 
Kreinovich (1977); we summarize here its results. 

Definition. A system of potentials (V,,In = 1,2 . . . .  } is called p-sufficient 
(x-sufficient) on the class K, if l exp( -  iH,,t)~t(p)l = lexp(- iH,,t)~2(p)] 
for all p, n,_t[lexp(-iH,,t)qJ~(x)[ = lexp(-iH,,t)+2(x)l for all x, n, t] im- 
plies that q~l = +2 for any qq, +2 ~ K. Here H,, = p2/2m + V,,(x) in the 
notation of the example, ~ denotes the Fourier transform of +. 

Theorem. (Kreinovich, 1977) (1) If (V,,} is L2-dense, it is p-suffi- 
cient in the class of all L 2 functions with continuous Fourier 
transform; (2) if (x~} is everywhere dense in R 3 and a ~ 0 ,  any of 
the systems { I x - x , l - ' e x p ( - , ~ l x - x , I ) } ,  ( Ix -x , l -~2"+'~}  is p- 
sufficient in the same class of functions; (3) there exists a p-suffi- 
cient system with no finite p-sufficient subsystem; (4) there exists a 
system of eight potentials p-sufficient on the class of L2-functions 
with analytic Fourier transform. 

One should expect that this theorem can be improved, since to repro- 
duce one complex-valued function ~k it requires data about an infinite 
sequence of functions generated by it. Unfortunately, too straightforward 
arguments fail (a typical example of an erroneous argument from a classical 
textbook (Kemble, 1937, p. 71): write q~(x, t ) =  0(x, t)exp[iep(x, t)], it fol- 
lows then that ~20/~t2= const xT(p2xT~p), suppose now that O and ~2p/~t2 
are known, then ~0 is determined as a solution of the equation ~7 (02 ~Tq0) = f;  
unfortunately, there are a lot of solutions of this equation, since q0 does not 
satisfy a priori any boundary conditions). 
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The following hypothesis  seems to be true, but  its p roof  (or disproof)  is 
unknown to us. 

Hypothesis. The set ~P = (A t, A2, A3} of three Hermi t ian  opera tors  in 
X is sufficient, if no pair  A~, Aj with i ~ j has a c o m m o n  invariant  subspace.  

We can prove  only a much weaker  result. 

Proposition. For  any Hermi t ian  opera to r  At with a s imple purely 
discrete spect rum there exist two other  Hermi t ian  opera tors  A2, A 3 with 
purely discrete spectra  such that  the conclusion of the hypothesis  holds. 

Proof. Let x E  X, (x]x)  = 1, (l t, l 2 . . . .  } is the basis of  normal ized eigen- 
vectors for A t and x = Y.7~ since Ix~] are given, we can rewrite the last 
equat ion as x = Z~=lexp(i~Pk)fk with real qo k to be determined.  We choose 
A 2 and A 3 to have simple spectra  with eigenvectors of  the form 

II + 12 It + 12 and It + i12 It + i13 
. . . .  . . . .  

so that  

A2( I , + I k) = N2)(l t + lk ), A3( I, + ilk) = N~)(I, + ilk) 

Then  

x =  (xlgk)gk = E (Xlhk)hk 
k = l  k = l  

where 

gk =- ( t ,  + = ( t ,  + 

it follows that  

(x l  g~ ) = [exp( i~k + ~ )( fk+t  [Ik+t ) + exp(icp, )( f ,  tit ) ] / ( 2  

=ae,,~,,~ +fle',~,, (Xlhk)=Ve",. ' , . , ,+iSe'~, 

where a,B,' t ,  8 are given real numbers .  N o w  I (x lgk)12=ot2- -F /~2-k  - 
2 aft cos( cp k + t - r J ), I (x I h k )l 2 = .y 2 + 8 2 + 2 ~,8 sin( r + J -- r ) de te rmine  all 
the differences ( ~ k -  r [and therefore the vector  x up to a factor  
exp(iq0)], as soon as [(x[ gk )l 2 and I (x  I h k )1 2 are given. �9 
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(3) We turn now to the question of physical consistency of quantum 
mechanics. Two points deserve special attention: firstly, would not the 
assumptions made in Section (1) contradict the experimentally well-estab- 
lished results of classical physics when applied to macroscopic system? 
Secondly, can the relativistic invariance be restored? These questions are 
being discussed here in the context of two well-known paradoxes (Einstein 
et al., 1935; SchrOdinger, 1935): SchrOdinger's cat paradox (SCP) and the 
Einstein-Podolsky-Rosen paradox (EPR). In SCP one considers a macro- 
scopic device M with a pointer M 0 interacting with a quantum system Q and 
designed in such a way that the position of the pointer (after the interaction 
is over, say, for any moment of time t > t0 )  displays the value of the 
observable A of Q measured in the course of the experiment. To simplify the 
discussion let us assume that the spectrum of A contains only two points, 
say, -+ 1. The pointer may be found in one of the three positions 0,-+1; 
moreover, let its initial position be 0, while for t > t o its position, 1 or - 1, 
coincides with the measured value of A. Let P, be the observable of the 
compound system {Q, M} corresponding to the position of M o at the 
moment t. Let us assume that the interaction starts at the moment t~ and let 

describe the way of preparation of M (we assume Y to be a pure state, for 
simplicity); let us assume that Q has been prepared in a state f ,  where 
Y = Yl + Y2 and A y  I = Yl, A Y 2  = - -  )2" Then P , ( x |  = 0 for t < t I and 
P , ( x | 1 7 4  for t > t  o. Now a macroscopic observable Pt is 
supposed to have a definite value for large enough t (the pointer M 0 is to be 
found in one of its finite positions -+ 1 !), but we cannot predict it theoreti- 
cally. Reading off the position of M 0 changes our information about the 
system {Q, M).  One may ask whether it is possible, in practice, to dis- 
tinguish between the preparation procedures described by the pure state 
x |  by the mixture �89 I --k R2), where R i is the projector on x |  i. To 
settle this question let us consider an observable B~ and compare its average 
values (B,)  R and ( B , ) ~  in the states R =�89 + R2) and x |  It follows 
that 

(B,) R = S p ( R - B , )  = (B'(x|174 
( x | 1 7 4  = (B,).,.| 

for any B t such that Bo.P o = Po.Bo. If B t is a macroscopic observable, it 
should allow for simultaneous with 1;', measurements, and, therefore, we can 
assume BtP t = PtBt in this case. Thus the preparation procedures described 

by R and by x |  are macroscopically indistinguishable, and the situation 
described in SCP does not differ too much from the usual nondeterministic 
situations of statistical physics. However, on the quantum level the states R 
and x |  are different, and, therefore, the system prepared in the state x |  
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exhibits some subtle properties unexpected for a macroscopic  pointer. These 
quan tum properties are destroyed by the observation (reading off the 
position of  the pointer). In order to notice these quan tum effects one has to 
abandon the use of  M as a measuring device, since any observable one can 
measure simultaneously with P, cannot  be used to dinstinguish between R 
and x| y. 

To describe the Gedankenexper iment  considered in EPR we introduce 
a quan tum system Q that consists of two parts in two regions of  space, o~ 
and o 2, far removed from each other (in particular, we assume o1Ao 2 = O ) .  
Let us define an observable 

0, x E  o tUo 2 

A , ( x ) =  A 1, x ~ o ,  

A 2, x E  0 2 

where A ~ and A 2 are operators in the underlying Hilbert space. Consider  a 
preparat ion procedure  qS such that ~ = qh + ~k2 and Alibi = A2~i = ( -  1)i~pi, 
and suppose that a 01 observer measures A t (x)  for some t and x ~ o~; he can 
then predict the ou tcome of the measurement  made in 0 2 . Can this proce- 
dure be used for an instantaneous transmission of information? Suppose 
At(x ) has been measured in 01 on a sequence s = (s t, s 2 . . . .  ) of  ~-prepared 
copies of the system; then the results of  At(x ) m e a s u r e m e n t s  for x E o 2 are 
also known. However,  since both  a measurement  of At(x ) for x ~  o 2 on s 
"be fo re"  the experiment in o~ and a measurement  of the same type "af te r"  
the exper iment  in 01 yield the same statistics (i.e., the same 
lim,,_ool/nY.~'=ta ~, equal to 0 in our case; here a i is the value of  At(x ) 
obtained during the measurement  on si), no  transmission of  information 
occurs (in fact, the situation we have just  described does not differ too much 
from a nonquan tum example: suppose one sends two identical balls of  
unknown color in closed boxes to different regions of space, and two 
observers far removed from each other open the boxes, then any of  them is 
aware of  the answer another one gets). A contradict ion would arise if one of 
the observers could check the value of  an observable distinguishing between 

and �89 + P2), where P / i s  the projector on ~,. Thus we set now 

I 
O, x ~  alUa 2 

A , ( x ) =  A t , x E a ,  

LB, x~o2 
where B ~  = ~b 2 , Bff2 = ~b I 

The measurement  of  At(x) for x E a  I does change the statistics of  the 
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measurements in o2: B4` = 4`, while 4̀ 1 and 4`2 are not the eigenvectors of B. 
This clearly contradicts special relativity. However, such observables are not 
allowed by the relativistic quantum theory: one of the postulates of this 
theory requires the commutation relation [At(x ), A~(y)] = 0 for x 4; y to 
hold (see, for example, Streater and Wightman, 1964, p. 100), whenever 
At(x ) corresponds to a directly measurable physical quantity, in our case, 
[A I, B]4`~ =(AIB-BAI)4`I  =24,24:0 .  Thus no contradiction arises. It is 
interesting to remark that EPR can be used as a motivation for these 
commutation relations. 

(4) Our final remarks concern quantum logic. In particular, we recall 
that it is responsible for a motivation of the seemingly ad hoc Hilbert space 
formalism. A decisive difference between quantum and classical mechanics 
is due to the existence of noncommuting quantum observables. Accordingly, 
there exist pairs of propositions of the form v ( A ) E B  that cannot be 
verified simultaneously. That is why the internal logic of a quantum system 
Q, represented by the lattice of all closed subspaces of the Hilbert space X 
associated with Q, can be best described as a partial Boolean algebra (PBA): 
one notices that any subset of pairwise "commuting" propositions forms a 
Boolean algebra (compare Kochen and Specher, 1968). 

Definition. A quadruple (S, l, N, ' )  is called a partial Boolean algebra, if 
the set S, the binary predicate ~, the binary operation N, and the unary 
operation ' satisfy the following conditions: (1) any subset T C S such that 

a~b is true for any pair a, b E T  forms a Boolean algebra with respect to 
N, ' ;  (2) the predicate l is reflexive, that is, ala holds, and symmetric; (3) 
there exist two elements 0, 1 such that 0~a, l~a for any a and aN0 ---- 0, aN 1 
= a , 0 ' = l .  

The set of all projectors o2(X) in a Hilbert space X forms a PBA, if one 
sets PIMP2 whenever PIP2 = P2PI, PIAP2 --- inf(Pj, P2 ) (in other words, PIN 
P2 is the projector on the subspace P~XNPzX), Pf = 1 - P~ for any PI, P2 ~ 
~(x). 

In any PBA we can define a partial ordering ~< by a ~< b, if a~b and 
anb = a. A PBA is called a lattice if anb ~ sub{c I c ~< a, c ~< b} exists for any 
pair a, b of its elements. A lattice is said to be modular if aU(bnc) = (aUb) 
Nc whenever a ~< c; it is said to be orthomodular, if aU (b n a ' )  = b for a ~< b; 
a minimal element p 4:0 is called an atom, a lattice is atomic, if for any b 
there exists an atom p ~< b. The lattice of all subspaces of a vector space is a 
modular atomic lattice; the lattice of all closed subspaces of a Hilbert space 
is not modular, but it is orthomodular and atomic; the lattice of all subsets 
of a set is a Boolean algebra. A lattice is called complete, if every its subset 
has the least upper bound. It turns out that (Piron, 1964) any complete 
orthomodular atomic lattice is isomorphic to a direct sum of lattices each of 
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which can be realized as a lattice of closed subspaces of a vector space over 
a field with involution (with possible exceptions in dimension two). This 
theorem partly explains how the Hilbert space formalism arises and suggests 
its possible generalizations (Finkelstein et al., 1962). Thus the internal logic 
J(Q) of a quantum system Q can be described axiomatically as follows: let 
c~ be the set of observables of Q, then (1) for any AEA,, B E ~ ( R )  the 
expression v ( A ) E  B is called an elementary proposition; (2) every elementary 
proposition is a preformula; if a, b are preformulas, then a', aUb, anb are 
preformulas; (3) for any preformulas a, b the expression a ~< b is a formula. 
Moreover, we introduce the following axioms: (a) a " =  a; (b) ( a U b ) ' =  a ' N  
b'; (c) a U ( b n a ' ) = b  whenever a<~b (orhomodularity). Semantics of this 
system in terms of experimentally verifiable assertions can be built up as 
follows. Let us consider a classical predicate calculus K with two sets of 
variables: a, b, c . . . .  for propositions, and p, p~, P2 . . . .  for measurements 
and two binary predicates, T(a, P) and H(a, P). These predicates are to be 
directly verifiable; T(a, P) asserts: " the  proposition a has been found to be 
true by the measurement p",  H(a,p)  asserts: " the  measurement P is 
performed to verify the validity of a." The following axioms are assumed to 
hold: 

(0) T(a, p)DH(a, p) 

(1) H(a, p )D(T(a ,  p ) V  T(a', p)) 

(2) Va 3oH(a, p) 

(3) H(a,p)--H(a',p) 

To assign a truth value to a formula a<~b of J(Q) we interpret it as a 
formula Vp(T(a,p)DT(b,p))  in K; if a is a preformula of the form 
v (A)E  E, it is assumed to be verified experimentally; T(a', P) is interpreted 
as H(a, O)&~T(a, p); aUb <<- c means a <~ c&b <~ c; c <~ aUb means Vd((a <~ 
d&b <~ d)De <- a n b ) ;  c ~ anb means c <~ a&c <~ b; anb <~ c means Vd((d ~< 
a&d<-b)Dd<~c). It follows that T(a",p)  can be interpreted as T(a,o). 
Thus every formula 9 /of  J(Q) can be interpreted as a formula f ( ~  ) in K in 
such a way that f ( ~ )  contains predicates T(a, p) and H(a, p) with a of the 
form v ( A ) E E  only; we conclude therefore that f ( ~ )  can be verified 
experimentally. It follows from the above discussion that the quantum 
mechanical description differs from the classical one by its logicomathe- 
matical structure or, alternatively, by the algebraic structure of the set of 
quantum observables. Indeterminism of quantum mechanics can be consid- 
ered as a necessary consequence of its underlying mathematical structure. It 
is tempting to consider quantum mechanics as an incomplete theory and to 
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"discover" the phase space of "hidden variables" related to quantum 
mechanics in the same way as the phase space of statistical physics is related 
to macrothermodynamics. The main obstacle is apparent: quantum logic 
differs from the classical one. However, it is, of course, possible to introduce 
such variables for each Boolean subalgebra. In fact, the semantical interpre- 
tation of quantum logic we have just discussed provides us with an example 
of such a structure. Let ~ be the set of all measurements and S a -- Co IT(a, p) 
holds) is the subset of this "phase space" corresponding to the proposition 
a. It follows from our axioms that Sanb = S~ASb, S~ub <~ S~USb; however, in 
general, S~u b v ~ S~ USh; moreover, Sa US~, 4: ~]L, since S, US~, = ( p I H( a, p) 
holds} and there are measurements which do not check a. Here the 
difference between quantum and classical theory manifests itself in the 
impossibility of simultaneous observation for a pair of incompatible pro- 
positions. On the other hand, for every Boolean subalgebra of propositions 
we can set ~_~L B = (plH(a, p) for aC  B); S~ = (piT(a, p) holds, pC "3~B} for 
any aC B. Since for any p in 91L B the formula T(a, p)V T(a', p) holds, it 
follows that Sou h = SaUS b. Thus we have constructed a "phase space" a)L B 
for every Boolean subalgebra B C ~3~: one may say that for every pC ~_3VC s 
the outcome of the measurements is certain. This construction should be 
compared with the following general result (Gudder, 1970). Let t~ be a 
lattice with an orthocomplement, 

Q= m[m: ff ~ [ 0 , 1 ] ,  m a i = m(ai) forpairwisedis jointa i  
' =  i = 1  

be the set of additive functionals on ~. One can associate with ~ a "phase 
space" ~2 in such a way that for every Boolean subalgebra B C E there exists 
a function GB: M • f~ • B --, C 0,1 } (C 0,1 } is the set containing two ele- 
ments 0, 1 only), and GB(rn, ~o, at) <~ Gs(m, ~o, a2) whenever a I ~< a 2. We say 
that a holds in the "phase space" point (m, t0) whenever GB(m, ~o, a)= 1. 
One can prove, however, that for a non-Boolean 1~ the function G B does 
depend on B (see Kochen and Specker, 1968, for precise theorems of this 
kind), therefore the proposition a may be valid if checked in the context of 
B and false in the context B' [i.e., GB,(m,w,a)=l ,  while GB(m, to, a)=O ]. 
In our construction a is checked independently of the context, but the phase 
space 9iL B is context dependent. As numerous impossibility theorems (e.g., 
Kochen and Specker, 1968) show, the deterministic paradise of classical 
physics is lost, and one cannot mimic the statistical physics phase space 
approach to restore it. 

(5) To close this brief outline of a few problems and ideas in founda- 
tions of quantum mechanics we have to note that the measurement of 
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observables as described above does not require any "reduction of the wave 
packet" or similar conceptions. Quantum theory cannot make any a priori 
predictions about behavior of a microsystem after its interaction with a 
macroscopic measuring device. Such an interaction is to be analyzed indi- 
vidually according to the laws of quantum mechanics. A rather complete 
bibliography on the foundations of quantum mechanics is to be found in 
Suppers (1976). This paper is based on our studies of quantum logic 
(Moroz, 1971, 1974, 1977, 1979; Moroz and Kreinovich, 1975). We are 
influenced and guided by the publications listed in the References. 
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